Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 13(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37891811

RESUMO

Seizure-mediated oxidative stress is a crucial mechanism in the pathophysiology of epilepsy. This study evaluated the antioxidant effects of daytime-restricted feeding (DRF) and the role of the Nrf2 signaling pathway in a lithium-pilocarpine model seizure model that induces status epilepticus (SE). We performed a lipoperoxidation assay and dihydroethidium fluorescence to measure oxidative stress markers in the hippocampus (malondialdehyde and reactive oxygen species). The protein content of Nrf2 and its downstream protein SOD2 was evaluated using Western blotting. The cellular distribution of the Nrf2 and SOD2 proteins in the pyramidal cell layer of both the CA1 and CA3 hippocampal subfields and astrocytes (GFAP marker) were quantified using immunofluorescence and immunohistochemistry, respectively. Our results indicate that DRF reduced the malondialdehyde levels and the production of reactive oxygen species. Furthermore, a significant increase in Nrf2 and SOD2 protein content was observed in animals subjected to restrictive diet. In addition, DRF increased the relative intensity of the Nrf2 fluorescence in the perinuclear and nuclear compartments of pyramidal neurons in the CA1 subfield. Nrf2 immunoreactivity and the astrocyte marker GFAP also increased their colocalization under DRF conditions. Additionally, SOD2 immunoreactivity was increased in CA1 pyramidal neurons but not in the CA3 region. Our findings suggest that DRF partially prevents oxidative stress by increasing the Nrf2 transcriptional factor and the SOD2 enzyme during the development of SE.

2.
Biomed Pharmacother ; 168: 115720, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839110

RESUMO

The aggressive and incurable diffuse gliomas constitute 80% of malignant brain tumors, and patients succumb to recurrent surgeries and drug resistance. Epidemiological research indicates that substantial consumption of fruits and vegetables diminishes the risk of developing this tumor type. Broccoli consumption has shown beneficial effects in both cancer and neurodegenerative diseases. These effects are partially attributed to the isothiocyanate sulforaphane (SFN), which can regulate the Keap1/Nrf2/ARE signaling pathway, stimulate detoxifying enzymes, and activate cellular antioxidant defense processes. This study employs a C6 rat glioma model to assess the chemoprotective potential of aqueous extracts from broccoli seeds, sprouts, and inflorescences, all rich in SFN, and pure SFN as positive control. The findings reveal that administering a dose of 100 mg/kg of broccoli sprout aqueous extract and 0.1 mg/kg of SFN to animals for 30 days before introducing 1 × 104 cells effectively halts tumor growth and progression. This study underscores the significance of exploring foods abundant in bioactive compounds, such as derivatives of broccoli, for potential preventive integration into daily diets. Using broccoli sprouts as a natural defense against cancer development might seem idealistic, yet this investigation establishes that administering this extract proves to be a valuable approach in designing strategies for glioma prevention. Although the findings stem from a rat glioma model, they offer promising insights for subsequent preclinical and clinical research endeavors.


Assuntos
Brassica , Glioma , Humanos , Ratos , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Glioma/prevenção & controle
3.
Curr Pharm Des ; 28(28): 2283-2297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35713147

RESUMO

Epilepsy is the most common chronic neurological disease, affecting approximately 65 million people worldwide, with mesial temporal lobe epilepsy (mTLE) being the most common type, characterized by the presence of focal seizures that begin in the hippocampus, and subsequently generalize to structures such as the cerebral cortex. It is estimated that approximately 40% of patients with mTLE develop drug resistance (DR), whose pathophysiological mechanisms remain unclear. The neuronal network hypothesis is one attempt to understand the mechanisms underlying resistance to antiepileptic drugs (AEDs), since recurrent seizure activity generates excitotoxic damage and activation of neuronal death and survival pathways that, in turn, promote the formation of aberrant neuronal networks. This review addresses the mechanisms that are activated, perhaps as compensatory mechanisms in response to the neurological damage caused by epileptic seizures, but that affect the formation of aberrant connections that allow the establishment of inappropriate circuits. On the other hand, glia seems to have a relevant role in post-seizure plasticity, thus supporting the hypothesis of the neuronal network in drug-resistant epilepsy, which has been proposed for ELT.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Anticonvulsivantes/uso terapêutico , Epilepsia do Lobo Temporal/tratamento farmacológico , Hipocampo , Humanos , Neuroglia , Convulsões/tratamento farmacológico
4.
Behav Pharmacol ; 31(7): 633-640, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32483054

RESUMO

Ketamine is an anesthetic agent that antagonizes N-methyl-d-aspartate receptors, inducing psychotic-like symptoms in healthy humans and animals. This agent has been used as a pharmacological tool for studying biochemical and physiological mechanisms underlying the clinical manifestations of schizophrenia. The main goal of this study was to evaluate the effect of repeated injections of ketamine (5 and 10 mg/kg, i.p., daily for 5 days) on recognition memory and neuronal morphology in ICR-CD1 mice. This treatment induced recognition memory impairment in the novel object recognition test and a decrease in dendritic spines density in both dorsal striatum and CA1-hippocampus. Sholl analysis showed that both ketamine doses decrease the dendritic arborization in ventromedial prefrontal cortex, dorsal striatum, and CA1-hippocampus. Finally, dendritic spines morphology was modified by both doses; that is, an increase of the filipodia-type spines (10 mg/kg) and a reduction of the mushroom-type spines (5 and 10 mg/kg) was observed in the ventromedial prefrontal cortex. In the dorsal striatum, the low dose of ketamine induced an increase in long thin spines and a decrease of mushroom spines. Interestingly, in CA1-hippocampus, there was an increase in the mushrooms type spines (5 mg/kg). Current findings suggest that the subchronic blockade of N-methyl-d-aspartate receptor changes the neuronal plasticity of several brain regions putatively related to recognition memory impairment.


Assuntos
Antagonistas de Aminoácidos Excitatórios/toxicidade , Ketamina/toxicidade , Transtornos da Memória/induzido quimicamente , Reconhecimento Psicológico/efeitos dos fármacos , Animais , Corpo Estriado/efeitos dos fármacos , Espinhas Dendríticas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Hipocampo/efeitos dos fármacos , Ketamina/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos ICR , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
5.
Front Neurol ; 11: 136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210903

RESUMO

The regenerative capability of the central nervous system is limited after traumatic spinal cord injury (SCI) due to intrinsic and extrinsic factors that inhibit spinal cord regeneration, resulting in deficient functional recovery. It has been shown that strategies, such as pre-degenerated peripheral nerve (PPN) grafts or the use of bone marrow stromal cells (BMSCs) or exogenous molecules, such as chondroitinase ABC (ChABC) promote axonal growth and remyelination, resulting in an improvement in locomotor function. These treatments have been primarily assessed in acute injury models. The aim of the present study is to evaluate the ability of several single and combined treatments in order to modify the course of chronic complete SCI in rats. A complete cord transection was performed at the T9 level. One month later, animals were divided into five groups: original injury only (control group), and original injury plus spinal cord re-transection to create a gap to accommodate BMSCs, PPN, PPN + BMSCs, and PPN + BMSCs + ChABC. In comparison with control and single-treatment groups (PPN and BMSCs), combined treatment groups (PPN + BMSCs and PPN + BMSCs + ChABC) showed significative axonal regrowth, as revealed by an increase in GAP-43 and MAP-1B expression in axonal fibers, which correlated with an improvement in locomotor function. In conclusion, the combined therapies tested here improve locomotor function by enhancing axonal regeneration in rats with chronic SCI. Further studies are warranted to refine this promising line of research for clinical purposes.

6.
Curr Pharm Des ; 26(12): 1388-1401, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32196444

RESUMO

BACKGROUND: Neuroinflammation induced in response to damage caused by status epilepticus (SE) activates the interleukin (IL)1-ß pathway and proinflammatory proteins that increase vulnerability to the development of spontaneous seizure activity and/or epilepsy. OBJECTIVES: The study aimed to assess the short-term anti-inflammatory and neuroprotective effects of Magnolia officinalis (MO) on recurrent SE in immature rats. METHODS: Sprague-Dawley rats at PN day 10 were used; n = 60 rats were divided into two control groups, SHAM and KA, and two experimental groups, MO (KA-MO) and Celecoxib (KA-Clbx). The anti-inflammatory effect of a single dose of MO was evaluated at 6 and 24 hr by Western blotting and on day 30 PN via a subchronic administration of MO to assess neuronal preservation and hippocampal gliosis by immunohistochemistry for NeunN and GFAP, respectively. RESULTS: KA-MO caused a decrease in the expression of IL1-ß and Cox-2 at 6 and 24 h post-treatment, a reduction in iNOS synthase at 6 and 24 hr post-treatment and reduced neuronal loss and gliosis at postnatal day 30, similar to Clbx. CONCLUSION: The results indicating that Magnolia officinalis is an alternative preventive treatment for early stages of epileptogenesis are encouraging.


Assuntos
Magnolia , Estado Epiléptico , Animais , Modelos Animais de Doenças , Hipocampo/fisiologia , Inflamação/tratamento farmacológico , Ácido Caínico , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico
7.
Front Behav Neurosci ; 14: 610484, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510627

RESUMO

Neural hyperexcitability in the event of damage during early life, such as hyperthermia, hypoxia, traumatic brain injury, status epilepticus, or a pre-existing neuroinflammatory condition, can promote the process of epileptogenesis, which is defined as the sequence of events that converts a normal circuit into a hyperexcitable circuit and represents the time that occurs between the damaging event and the development of spontaneous seizure activity or the establishment of epilepsy. Epilepsy is the most common neurological disease in the world, characterized by the presence of seizures recurring without apparent provocation. Cannabidiol (CBD), a phytocannabinoid derived from the subspecies Cannabis sativa (CS), is the most studied active ingredient and is currently studied as a therapeutic strategy: it is an anticonvulsant mainly used in children with catastrophic epileptic syndromes and has also been reported to have anti-inflammatory and antioxidant effects, supporting it as a therapeutic strategy with neuroprotective potential. However, the mechanisms by which CBD exerts these effects are not entirely known, and the few studies on acute and chronic models in immature animals have provided contradictory results. Thus, it is difficult to evaluate the therapeutic profile of CBD, as well as the involvement of the endocannabinoid system in epileptogenesis in the immature brain. Therefore, this review focuses on the collection of scientific data in animal models, as well as information from clinical studies on the effects of cannabinoids on epileptogenesis and their anticonvulsant and adverse effects in early life.

8.
Behav Sci (Basel) ; 9(7)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252624

RESUMO

Status epilepticus (SE) is one of the most significant complications in pediatric neurology. Clinical studies have shown positive effects of electroacupuncture (EA) as a therapeutic alternative in the control of partial seizures and secondary generalized clonic seizures. EA promotes the release of neurotransmitters such as GABA and some opioids. The present study aimed to evaluate the anticonvulsive and neuromodulatory effects of Shui Gou DM26 (SG_DM26) acupuncture point electrostimulation on the expression of the glutamate decarboxylase 67 (GAD67) enzyme and the glutamate transporter EAAC1 in an early SE model. At ten postnatal days (10-PD), male rats weighing 22-26 g were divided into 16 groups, including control and treatment groups: Simple stimulation, electrostimulation, anticonvulsant drug treatment, and combined treatment-electrostimulation and pentobarbital (PB). SE was induced with kainic acid (KA), and the following parameters were measured: Motor behavior, and expression of GAD67 and EAAC1. The results suggest an antiepileptic effect derived from SG DM26 point EA. The possible mechanism is most likely the increased production of the inhibitory neurotransmitter GABA, which is observed as an increase in the expression of both GAD67 and EAAC1, as well as the potential synergy between the neuromodulator effects of EA and PB.

9.
Behav Sci (Basel) ; 8(6)2018 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890748

RESUMO

Oxidative stress (OS) has been implicated as a pathophysiological mechanism of drug-resistant epilepsy, but little is known about the relationship between OS markers and clinical parameters, such as the number of drugs, age onset of seizure and frequency of seizures per month. The current study’s aim was to evaluate several oxidative stress markers and antioxidants in 18 drug-resistant partial complex seizure (DRPCS) patients compared to a control group (age and sex matched), and the results were related to clinical variables. We examined malondialdehyde (MDA), advanced oxidation protein products (AOPP), advanced glycation end products (AGEs), nitric oxide (NO), uric acid, superoxide dismutase (SOD), glutathione, vitamin C, 4-hydroxy-2-nonenal (4-HNE) and nitrotyrosine (3-NT). All markers except 4-HNE and 3-NT were studied by spectrophotometry. The expressions of 4-HNE and 3-NT were evaluated by Western blot analysis. MDA levels in patients were significantly increased (p ≤ 0.0001) while AOPP levels were similar to the control group. AGEs, NO and uric acid concentrations were significantly decreased (p ≤ 0.004, p ≤ 0.005, p ≤ 0.0001, respectively). Expressions of 3-NT and 4-HNE were increased (p ≤ 0.005) similarly to SOD activity (p = 0.0001), whereas vitamin C was considerably diminished (p = 0.0001). Glutathione levels were similar to the control group. There was a positive correlation between NO and MDA with the number of drugs. The expression of 3-NT was positively related with the frequency of seizures per month. There was a negative relationship between MDA and age at onset of seizures, as well as vitamin C with seizure frequency/month. We detected an imbalance in the redox state in patients with DRCPS, supporting oxidative stress as a relevant mechanism in this pathology. Thus, it is apparent that some oxidant and antioxidant parameters are closely linked with clinical variables.

10.
Pharmacol Biochem Behav ; 170: 79-86, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29763644

RESUMO

Epileptic seizures constitute an important problem in pediatric neurology during the developmental period. The frequency and nosological significance of seizures, as well as their association with epileptogenesis, may be related to underlying mechanisms such as neuroinflammation. Those mechanisms of response activate inflammatory molecules induced in the neurons, activated glial cells and endothelial cells via the key HMGB1/TLR4 pathway. In this study, the drug celecoxib (CCX) was used as a blocker of the cyclooxygenase 2 (COX-2) and HMGB1/TLR-4 pathways. The experimental model was implemented in 10-day-old neonatal Sprague Dawley rats to induce recurrent seizures with kainic acid (KA, 1.4 mg/kg). Data were evaluated at early (14 PND) and late (30 PND) time points. The results showed that the CCX and CCX + pentobarbital (PB) groups exhibited a protective effect by significantly increasing the time latency of seizures compared to the KA group at both early (p < 0.01) and late (p < 0.001) times. When the CCX group was compared to the KA group, there was also a significant decrease in the number of HMGB1 and TLR-4 transcripts (p < 0.05) and in COX-2 protein expression (p < 0.05) in the most important areas for seizure generation (the hippocampus and cortex) at both the early and late time points. These results demonstrated that CCX treatment after epileptic seizures has a neuroprotective effect due to the inhibition of proinflammatory proteins and associated signaling pathways and reduces seizure susceptibility. Additionally, the timely intervention of inflammatory pathways will reduce the risk of developing epilepsy in adulthood.


Assuntos
Celecoxib/farmacologia , Proteína HMGB1/fisiologia , Fatores Imunológicos/farmacologia , Convulsões/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/fisiologia , Animais , Ciclo-Oxigenase 2/genética , Feminino , Proteína HMGB1/genética , Hipocampo/metabolismo , Ácido Caínico/farmacologia , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Tempo de Reação , Recidiva , Convulsões/imunologia , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...